Team names: Brandon Levy, Margaret Yu, Lawrence Sun, Ashley Yang
Summary sentence: The data say that the average concentration of small particulate matter (PM2.5) in Beijing’s air in January 2017 was 121.96 µg/m³, much higher than both the World Health Organization’s safe standard of 35 µg/m³ and the more lenient Chinese safe standard of 75 µg/m³. We want to tell this story because the air quality in Chinese cities is not even close to meeting the lax standards of the Chinese government, let alone the stricter WHO standard. Our target audience is Chinese politicians attending environmental conferences who have the power to reduce air pollution in their nation’s cities.
Our data come from the U.S. State Department’s “Mission China” air quality monitoring program. Specifically, we examined data from the years 2017 and 2016 that show the concentration of small particulate matter (PM2.5) air pollution each hour of each day in those years in Beijing. We ultimately settled on showing the monthly average across January 2017 (121.96 µg/m³) and decided to compare it to the standards established by the Chinese government (75 µg/m³) and the WHO (35 µg/m³), which we found in the WHO’s Air Quality Guidelines for Particular Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005.
In our prototype, we are physically representing the data as balls of newspaper suspended by string from a canopy. The idea for the final piece would be to set up a series of these canopies leading up to the doors of the building where the Chinese politicians are gathering for their environment-related conference. The politicians would have to walk underneath these canopies – and through these “blown up” PM2.5 particulates – in order to get into the conference. In front of each canopy it would say what that canopy represents (WHO standard, Chinese standard, January 2017 average, etc.). In our mock-up, each newspaper ball represents 4 µg/m³ of PM2.5. In a scaled up version, each canopy would be one meter by one meter and each string would hang down one meter from the canopy, thereby representing one cubic meter of space, and each hanging ball would represent 1 µg/m³ of PM2.5.
This is an effective way to tell the story of our data because it turns PM2.5 pollution into something that is not only easy to see but also something that can be physically felt. We hope that walking through these hanging bundles of newspaper balls will be a sobering experience for the politicians, making them think about how problematic air pollution is and how PM2.5 pollution in Bejing far exceeds even the Chinese government’s lax standard. Hopefully, this will encourage them to pass legislation to curb air pollution and/or enforce existing laws to bring pollution levels down to their government’s safe limit.